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Abstract 

The refinement of electron-density distributions for non- 
centrosymmetric crystals from X-ray diffraction data 
may lead to a very good fit between model and data but 
to totally meaningless electron densities. This is to a 
large extent because varying certain parameters, or 
combination of parameters, in the model mainly leads 
to a change in the phases of the structure factors. A 
formal analysis of why this happens, when using 
multipole models, is given as well as specific examples 
using real data: the contributions of odd-order multi- 
poles, which are invariant under crystal-class symmetry 
operations, are poorly determined. The importance of 
applying constraints on the models is stressed. The 
conclusions of this analysis can be carried over to 
refinements of anharmonic atomic vibrations. 

1. Introduction 

What are the consequences of the fact that in any 
diffraction experiment we only determine the structure- 
factor moduli and not the phases of the complex structure 
factors? The conclusions drawn from the discussion 
below applies not only to the analysis of X-ray dif- 
fraction data in terms of electron-density distributions but 
to any interpretation of single-crystal diffraction data 
going beyond the atomic structure and harmonic thermal 
motions of the atoms. 

Until about ten years ago, it was speculated whether 
reliable electron-density distributions from X-ray diffrac- 
tion data for crystals belonging to non-centrosymmetric 
classes could be obtained. Since then, a series of 
successful studies of organic and organometallic com- 
pounds indicated that this was indeed possible, but recent 
studies of highly symmetric non-centrosymmetric struc- 
tures gave results depending sensitively on the data set or 
the details of the model, e.g. boron nitride, zinc-blende- 
type structure (Eichhorn, Kirfel, Grochowski & Serda, 
1991), hexamethylenetetramine (Kampermann, Ruble & 
Craven, 1994, and work cited therein). We have analyzed 
existing data for GaAs, work which will be presented 
below, and have also been involved in a study of the 

electron-density distribution of LiB305 [space group 
Pna21 (Le Hrnaff, Hansen, Protas & Marnier, 1996)] for 
which the analysis also does not give an unambiguous 
result. 

In the pas t , the problem of undetermined, or poorly 
determined, parameters and density distributions has 
been discussed for some specific cases: third-order 
cumulants in the zinc-blende-type structure (Hazell & 
Willis, 1978); and a more general discussion of the 
electron density and anharmonicity of thermal vibrations 
in hexamethylenetetramine (space group I43m) for 
which Terpstra, Craven & Stewart (1993) recently 
published a study based on X-ray and neutron diffraction 
measurements. Short discussions concerning the phase 
problem when using the Gram-Charlier expansion were 
published some years ago (Nelmes & Tun, 1987, 1988; 
Hansen, 1988): the former authors showed that skewness 
can be detected by using a limited Gram-Charlier 
expansion, but that this is not the case for the Edgeworth 
expansion, whereas Hansen drew attention to the fact that 
the result is not unique. In a recent study of GaAs 
(Stevenson, 1994), there is also some discussion about 
poorly determined parameters (here third-order anhar- 
monicity), which is explained by high correlations 
between these parameters. 

The first section will be concerned with the effect of 
phase factors in structure-factor expressions. We will 
recall what form phase factors may take and we will 
apply these general principles to the multipole expansion 
of electron-density distributions. In the following 
sections, we examine the two examples, GaAs and 
LiB305, more closely. Finally, we consider how one may 
build into the charge-density analysis an automatic 
detection of when the problem becomes serious, and 
we will conclude by discussing the means that we may 
use to solve the problem. 

2. The information contained in the phase of the 
structure factor 

In this and the following section, it will be demonstrated 
from basic principles that, if only the structure-factor 
moduli are known, a refinement of the population 
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coefficients of the odd-order multipoles that are invariant 
under symmetry transformations of the crystal class leads 
to inaccurate and highly correlated parameters. The 
arguments can also be carried over to the models for 
anharmonic atomic motions. 

Modeling of the structure and the electron-density 
distribution using moduli of the structure factors implies 
prejudicing their phases. We will show that knowing 
only the moduli does not in general allow us to make a 
unique choice of phases. The arbitrariness of this choice 
leads to the problem described in the previous paragraph, 
and by examination of the expression of the structure 
factor for specific models it becomes clear that a change 
of the phases of a structure-factor set in some well 
defined manner is equivalent to modifying certain 
parameters. 

In order to analyze the problem, consider two electron- 
density distributions corresponding to the same set of 
moduli. The corresponding structure factors, F(H) and 
F'(H),  respectively, are then related by 

F'(H) = F(H) exp[iq~(H)], (1) 

where q~(H) is a real scalar function, which we may 
represent by a tensor expansion: 

q~(H) = d o + d~h r + d~Shrhs q- d~Sthrhsht + . . .  (2) 

(Einstein summation convention), h 1, h 2, h 3 are the 
components of the scattering vector H. 

We will suppose that the two density distributions are 
real (a physical constraint) and that they have the same 
space-group symmetry (the space group is in general 
known before one starts a fine analysis of experimental 
data) and we will then investigate what constraints this 
imposes on q~(H). 

The consequences of the condition that the density is 
real is that, for any set of structure factors, Friedel's law 
must be satisfied, F ( - H ) =  F*(H), i.e. we neglect at 
present the anomalous dispersion (its effect will be 
discussed later). One therefore obtains 

• ( - H )  = - ~ ( H )  + 2n'n 

(n is any integer; it may depend on H) and therefore 
that all even-order terms in the expansion (2) are equal 
to zero or n'(mod2n'), thus the coefficients d~ s, 
d~ stu . . . .  E {0, rr (mod 2n')} (throughout, phases will be 
given by their value modulo 2n'). 

The effect of imposing the crystal symmetry ~s that the 
odd-order coefficients dr1, d~ st . . . .  must form tensors that 
are invariant under the crystal-class symmetry opera- 
tions. This follows from 

F(HR) = F(H)exp( -2 r r iH.  t), 

where a symmetry operation is represented by 

Sr = R r  + t = r'. 

Points r and r' are related by symmetry, R is the 
rotational and t the translational part. Since this equality 

must also be satisfied by the modified structure-factor set 
{F'(h)}, we get the following condition: 

q~(HR) = q~(H) + 2rrn. (6) 

A sufficient condition is that the tensors d,~' . . . .  are 
invariant under the crystal-class operations or that some 
of the coefficients take the special values 0 and Jr. These 
are also the only two values allowed for centrosymmetric 
crystal structures. 

These two conditions show that we can limit ourselves 
to tensors d rst . . . .  of odd rank, m, which are invariant 
under crystal-class symmetry. 

We do not know how to exploit analytically the 
condition that the electron density should be overall 
positive. 

Let us consider as an example the polar crystal 
class 2 with its twofold axis parallel to the crystal- 
lographic b axis. The invariance imposes that a phase 
factor, satisfying the above conditions, may be written 

q~(H) = dZlk + d~22kkk + d~23hkl + d~'2h2k + d~23kl 2 

+ 5th and higher orders. (7) 

(Note that all superscripts on the coefficients are the 
contravariant indices of tensor elements.) 

To be specific, consider the first-order term in (7). A 
non-zero value of the coefficient d 2 means that the two 
density functions have different origins of the unit cell 
since 

exp(id2k) ~ fj exp 2rri(hxj + kyj + Izj) 
J 

= ~ fj exp 2n'/[hxj + k(yj + d 2/2n') + lzj]. 
J 

(8) 

In order to illustrate the effect of third-order terms, 
consider the cumulant expansion of the structure factor 

F(H) = ~ fj exp 2:rci(h~)exp(-hshtfl]~ ) 
(3) 

x e x p ( - i h s h t h u ~  u) . . . .  (9) 

The multiplication with a phase factor composed of the 
third-order terms is equivalent to changing the values of 
the corresponding cumulants, i.e. those that are invariant 
under crystal-class operations. The argument may of 
course be carried over to any odd-order cumulants. 

We can approach the problem differently. The third- 
order cumulants for two atoms, j and j ' ,  related by a 
twofold axis parallel to b must satisfy 

(4) 
~)11 --- __ /q ! l l .  ~222 ~222.  /q333 = __/q3.33. 

r-j '  , : /"j '  , r ' j  r ' j '  , 

( 5 )  ]~) 12 __ /JJ '¢/112 ., etc. (10) 

Consider a third-order cumulant expansion of the 
structure factors, 
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F(H) = ~ fj exp 2rri(hsx~)exp(-hsht~6~s~) 
J 

• stu 
× exp(- lhshthu~ J ). 

Separate out a common factor: 

F(H) = exp(-iBStUhshthu) ~ fj exp 2zri(hrv~) 
J 

× exp(-hshtffj~)exp[-ihshthu(~67 u - BStU)] 

= exp(-iBStUh~hthu)F'(H). (11) 

If the set {F'(H)} also obeys crystal symmetry, we must 
• ,~tu ~tu still satisfies (10), which reqmre that/3~ =/3~ - B  ~tu 

means that B stu c a n  take any value for the components stu 
for which lq stu glstu but must be zero for the others. h'j --" P'j '  

Changing the value of a component, which is invariant, 
for all atoms in the unit cell only leads to a change in the 
phase of the structure factors. Refining these cumulants 
for all atoms will therefore lead to a singular least- 
squares normal-equations matrix. As a consequence, we 
cannot refine all individual values for/~222, f l )23 ,  fl) i2 and 
1~233 f r o m  diffraction data. 

The cumulant expansion is from a mathematical point 
of view an extremely simple case, since the phase 
problem is not 'disguised'; by this we mean that it leads 
to truly singular normal equations. Of other expansions 
of the electron-density distribution based on the notion 
'atoms in crystals', one may consider the Gram-Charlier 
expansion, which is mainly used for describing anhar- 
monicity of atomic thermal motions, and the multipole 
expansion for modeling valence-electron-density distri- 
butions or a combination of the two. The .close 
resemblance between the cumulant and the Gram- 
Charlier expansions has already been pointed out by 
other authors (e.g. Kuhs, 1983) and the merits of the 
latter expansion was discussed by Nelmes & Tun (1987). 
The multipole expansion has a more complex form than 
the other two expansions but this is justified by 
physicochemical arguments and by the fact that it 
converges rapidly in practice. A convenient feature of 
the Gram-Charlier and multipole expansions is that the 
terms can be Fourier transformed individually contrary to 
the cumulant expansion leading to an infinite series. The 
next chapter is dedicated to the discussion of the 
multipole expansion but most of the arguments can be 
carded over to the Gram-Charlier expansion with only 
minor modifications and the general conclusions are 
identical. 

3. Multipole expansion of valence-electron charge 
densities 

Several expansions have been proposed in the past for 
the refinement of electron-density distributions from 
X-ray diffraction data (e.g. Stewart, 1976; Hirshfeld, 
1971; Hansen & Coppens, 1978; Craven, Weber & He, 
1987). For our discussion, they can be considered as 

equivalent. The form that we will use for the general 
discussion is that the electron density of an atom may be 
expressed as 

/max l 

pj(r) = Pjcore(r) + ~ ~ PjtmRjt(r)Ytm(r/r); (12) 
l=0 m = - l  

the corresponding atomic scattering factor is then given 
by the expression 

f j (n)  = fjcore(n) + ~ i t ~ ejtmqgjt(n)Ytm(H/H) • (13) 
l m 

fjcore is the Fourier transform of the spherically 
symmetric function Pjcore  representing the density of 
the atomic core electrons. Ylm are real spherical harmonic 
functions; each subset of Ylm having one value of I forms 
a rotationally invariant set, which means that the 
capability of a limited multipole expansion to describe 
a density function is independent of the choice of 
coordinate system; we therefore consider the situation 
where, for each atom, we choose the origin of the 
coordinate system at its nucleus and the axes for all of the 
atoms are oriented the same way. ~0j~ is the Fourier- 
Bessel transform of the radial functions Rjt: 

qgjl(H ) -- 4re f Rjt(r)jl[4rc(sinO)2r]r 2 dr. (14) 
0 

It is important to note that all terms in the expression for 
the atomic scattering factor are real with the exception of 
i t . We may therefore reorganize (13) as follows: 

even 

fj(H) : fjco~(H) + ~ ~ P i , ~ t ( H ) y t ~ ( H / H )  
l m 

odd 

+ i ~ ~ Pjtmqgjt(H)yt, n (H/H)  
l m 

= aj(H) + ibj(H), (15) 

where qgjl=~0jt for 1 = 0 , 4 , 8 , .  1 , 5 , 9 , . . .  and 
q g j t = - ~ t f o r l = 2 , 6 , 1 0  . . . . .  3,7, ii] . . . .  

The multipoles with l odd give an imaginary 
contribution to the complex atomic scattering factor 
because the corresponding density function is odd with 
respect to the inversion of the position vector r. We recall 
that the real spherical harmonic functions can be 
expressed in polynominal form (see e.g. Hansen & 
Coppens, 1978): 

ytm(H/H) = H-tPoltm(h, k, l), (16) 

where POltm is a homogeneous polynominal of degree l. 
We may therefore rewrite the imaginary part offj as 

odd 
b j  : ~ H -t ~t(H) ~ ~ c r s t " ' P f l m h r h s h t  . . . .  ( 1 7 )  

l rst.., m 

! r t 3 rst . . .  ; ( 1 8 )  -- (tpjl/H)Bth r + (qgj3/H )B3 hrhsht + 

the Einstein summation convention is to be applied. The 
real part may be expressed in a similar manner but this is 
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without consequences for our discussion. This expansion 
differs from the cumulant expansion in two respects: 

(a) g)jt/H t is a radial function of H but the important 
point is that each term has the same transformation 
properties under symmetry operations as the cumulants 
[Rrst... ~':t , equation (9)] have. 

_t I~rlDrstt. 1.. h (b) The terms ~Ojl/n o I t t r t t  s t " "  do not appear as the 
arguments of a complex exponential function but in the 
limit bj << aj we may make the following approximation 
for fj: 

fj(H) = aj(H)[1 + ibj(H)/aj(H)] 

aj(H)exp[ibj(H)/aj(H)]. (19) 

The condition bj << aj is reasonably well satisfied for 
most atoms since aj contains the scattering factor of the 
core electrons, which is dominating; the heavier the 
atom, the more true this is. Hydrogen is considered to be 
without core electrons but the spherical part of the 
valence electrons also contributes to aj. 

It should be stressed that bj is a linear function of the 
multipole population coefficients. Multiplying a structure 
factor set by a phase factor therefore corresponds to 
modifying the populations Prim of certain odd-order 
multipoles on all atoms if, among the functions Ylm 
invariant under the crystal-class symmetry operations, 
functions Clm" exist such that for all atoms (index j) 

O[bj(H)/aj(H)l/OPjt ~ ~-- SjlmClm(i'l), (20) 

where sit m are non-zero constants. For all reasonable 
models, qm will tend rather rapidly to zero for 
s in0/2 > 1A -1, since Ctm reflects the distribution of 
the valence-electron density. 

We must also comment on the more general case when 
anomalous scatterers are present in the crystal. Then the 
strict equality of (19) becomes (the real part of the 
anomalous dispersion has been included in aj) 

fj(I-I) = aj(H)[1 + iAfjl'/aj(H)][1 + ibj(H)/aj(H)] 

+ Af/'bj(H)/aj(H). (19a) 

When the last term can be neglected, the situation is 
similar to that without anomalous dispersion, i.e. 
modifying the contribution bj(H) corresponds to rotating 
the atomic scattering factor in the complex plane. 

If Aft' is reasonably large, the expression cannot be 
simplified as above [(19)] and it might be possible to 
obtain populations either by comparing Friedel pairs of 
reflections or using data collected with radiation at 
different wavelengths. Concerning the use of polynom- 
inal expansions of the Debye-Waller factors, the 'phase 
problem' cannot be solved this way since the Debye- 
Waller factor is a multiplicative correction to the atomic 
scattering factor and not additive as for the multipole 
expansion. 

Because of all the possible ways in which we may 
choose radial functions for the multipoles, it is difficult to 

push the general discussion any further. We will 
therefore illustrate what happens with a couple of 
examples to which the discussion by Terpstra et al 
(1993) of the refinement of hexamethylenetetramine may 
be added. 

Before going into this discussion, we shall make a 
comment concerning least-squares refinements of struc- 
ture-factor models. If a change of a certain combination 
of parameters only leads to a change in the phases of all 
observed structure factors, then the least-squares normal- 
equations matrix becomes singular. In the multipole 
model (contrary to the cumulant expansion), this will not 
be strictly true since (19) is only approximate. In most 
cases, it will therefore be possible to find a unique 
solution to the optimization problem but it is not 
necessarily physically meaningful. 

It should also be emphasized that the problem of 
indetermination, or in reality imprecise determination of 
certain parameters, does not depend in any direct way on 
the quality of the experimental data set: the normal- 
equations matrix is constructed from derivatives of 
calculated structure factors and weight factors, one 
element of the matrix being given by 

~ [  OIF (H)l/  OPi][ OIF (n)l / Opjlwn. 
H 

4. Multipole refinements of GaAs 

The experimental structure-factor moduli used in the 
present study are taken from the work of Matsushita & 
Hayashi (1977) for the strong reflections and from 
Pietsch, Tsirelson & Ozerov (1986) for the weak 
reflections. An X-ray diffraction study of the valence- 
charge-density distribution has also been published by 
Levallois & Allais (1986). 

The space group of GaAs having the zinc-blende-type 
structure is F43m. Ga was placed at 0,0,0 and As at 
1 ¼,1 Since both atoms occupy sites of 43m symmetry, 4 '  4" 
for each of them the multipole expansion through fourth 
order reduces to 

f j ( H )  = f j c o r e ( n )  -+" evf jvalence(n/K t) 

+ P j a q ) j a ( n ) c a ( n / H )  

--~ i[Pj32_qgj3(n)~Y32_(I'I/a). ( 2 1 )  

fjcore and fj valence are calculated for the ground state of the 
atoms. These functions are modified by a radial scaling 
parameter #,  

c a ( H / H  ) o~ (h  4 n t- k 4 n t- 14)/H 4 - 3_5 

Y32_Ot/H) = 2 h k l / n  3. 

The radial density functions corresponding to ~0j3 and ~0j4 
have been chosen: 

R3(r ) ¢x r 8 exp( - ( r )  
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e4( r  ) (x r 1° e x p ( - ( r ) .  

The value of  ( is given in Table 1. Parameters for 

Two things are remarkable about the results reported e,. 
in Table 1. The octupolar populations of  both atoms are r' 
numerically very large; we may compare with a result for e32- 

P40 
silicon, P 3 2 - :  0 .45(5)  (Spackman,  1986); but what  P44+ 
clearly shows that there is a problem is their large ~ (Bohr-1) * 

standard deviations and that they are highly correlated. A 
calculation of  their sum and difference gives 

P32- (Ga) + P32- (As) = - 4 . 0  (21) 

P 3 2 _ ( G a )  - P32_(As) - 0.4 (2) 

(standard deviations in parentheses). Thus, the sum is 
very poorly determined. This agrees with the discussion 
in the previous section. In GaAs,  the site symmetry  of  the 

Fig. 1. GaAs static valence-electron density distribution from an 
unconstrained refinement (see text). Contours at intervals of 
0.5 e ~-3, solid lines positive, dashed lines negative. 

5. Muitipole refinements of LiB305 

A charge-density study of  LiB305 (LBO) has been 
published by Radaev,  Genkina,  Lomonov,  Maksimov,  
Pisarevskfi, Chelokov & Simonov (1991) and Radaev,  

Fig. 2. GaAs static valence-electron density distribution from a 
constrained refinement (see text). Contours at intervals of 
0.1 e ,~-3, solid lines positive, dashed lines negative. 

Table 1. Results from a refinement of  GaAs 

Ga As 
2.4 (6) 5.6 (6) 
1.09 (14) 1.02 (4) 

-1.8 (11) -2.2 (11) 
0.19 (11) 0.15 (12) 
0.14 0.11 
9.0 (13) 7.5 (3) 

Pv(Ga)+Pv(As) = 8 by constraint (electroneutrality). Correlation 
coefficient Y[P32-(Ga), e32-(As)] : 0.984. P~+ = 0.740 P40 by 
constraint (see Hansen & Coppens, 1978). R(F)=0.44%, 
ew(F) = 0.45%. e(F) = ~ I lfobs~)l -- IFca~c(H)l I/Y~'~JFgJ~s(H)I" 
Rw(F ) = {)_.~ w.[iFob~(H) I _ ifcalc.(H)[] }1/2/{~--~ wnlFobs(H)[~},/~. 
* 1 Bohr = 1 Bohr radius = 0.529 A. 

atoms is equal to the crystal-class symmetry,  which 
implies that by adding a constant amount to P32- for each 
of the atoms mainly affects the phases of  the structure 
factors and not their moduli.  On the other hand, the 
difference of  the populations is determined with a much 
higher accuracy. 

In Fig. 1, we show the static model valence density in 
the (110) plane corresponding to the above-described 
model. This density must be considered as physically 
meaningless because of  the very pronounced negative 
regions in the neighborhood of  each atom. The main 
features come from the octupoles. We subsequently 
changed their populations such that their difference 
remained the same but their values have opposite signs: 
P32_(Ga) = -P32_(As)  = 0.18. With these values and ( 
fixed, we refined the model again. The fit was slightly 
poorer, R(F) -- 0.50%, Rw(F ) = 0.50% compared to 
0.45% found previously. The corresponding model 
valence density (Fig. 2) is now much more reasonable 
(note that the countour interval is 0.1 e ,~  -3 compared 
with 0.5 e ,A, -3 in Fig. 1) although it still shows regions of  
negative density. 

Sp~ SS~ 

Fig. 3. Schematic representation of a fragment of the structure of 
LiB303. The local coordinate systems used for the constrained 
multipole refinement of the electron density are indicated. 
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Maksimov, Simonov, Andreev & D'Yakov (1992). The 
present analysis is based on a data set collected at room 
temperature (Le H6naff, Hansen, Protas & Mamier, 
1996). 

The space group is Pna21, Z = 4. We may consider 
the structure as a three-dimensional polymer formed from 
the fragments shown in Fig. 3, where the central B303 
moiety is close to planar. The Li ions are located in 
channels running through the structure. 

In order to illustrate what happens with this type of 
structure, we have carded out two refinements. In both of 
them, lithium was treated as a free + 1 ion. For the other 
atoms, the multipole expansion was carded through to 
the third-order level (i.e. including octupoles). In the first 
refinement, no other constraints than the electroneutrality 
was imposed, whereas in the second we supposed that 

(a) 

(b) 
Fig. 4. LiB305 static electron deformation density in planes 

perpendicular to the hexagonal plane (B303) seen in Fig. 3 following 
an unconstrained ref'mement (a) containing the bond B(1)--O(3), 

containing bond B(2)--O(5). Contours at intervals of (0.b)5 e ~k_3, the 
solid lines positive, dashed lines negative. 

the pairs of atoms B(1), B(2) and O(3), 0(5), 
respectively, had identical deformations. The fits 
obtained are almost equally good for both [unconstrained 
model: R ( F ) =  1.41%; constrained model: R ( F ) =  
1.51%] and the residual density maps are low and quite 
similar (Apres < 0.15e.~,-3). In Fig. 4, we show the 
static deformation density (Ap ~ f)multipole-- 
Pindependentatoms calculated directly from the multipole 
model) in a plane through the B(1)--O(3) and 
B(2)--O(5) bonds and perpendicular to the pseudo 
molecular plane (B303 moiety). For the unconstrained 
model, it should be noted that the deformation density is 
very asymmetric with respect to the B303 plane and what 
we may term 'the bond peak' is displaced off the line 
connecting B(1) with 0(3) and B(2) with 0(5) and to the 
same side of the plane. When we constrain the model as 
described above, the deformation density becomes more 
symmetric with respect to the plane (Fig. 5), though not 
yet satisfactory to our mind, and the bond peaks are now 

~'-..... 

(a) 

i il;iiiiiiiiiiiiiiii::::iill i . 

...... °-" ." ,," ..." ." 
/ ,." 

." .. 

\ ' . .  **7""* 

(b) 
Fig. 5. As Fig. 4 but for a constrained refinement (see text). 
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on the connecting lines. For a more detailed discussion of 
the electron-density distribution in LBO, we refer to the 
work by Le H~naff et al. (1996) and in the next section 
we will explain why the constraints have made the model 
density more realistic. 

6. Detect ion of  'close to s ingular  situations'  - 
remedies  

We have described how we can determine from crystal 
symmetry what coefficients in the multipole expansion 
are poorly determined by an X-ray diffraction experi- 
ment. We will recall how an automatic diagnosis of this 
type of problem can be made during a least-squares 
refinement. The discussion will be based on the ideas of 
the 'singular value decomposition' (e.g. Press, Flannery, 
Teukolsky & Vetterling, 1990). 

The least-squares normal equations can be expressed 
as (e.g. Hamilton, 1964) 

B A p  = b, (22) 

Bij = ~ ,  Wn(OCn/OPi)(OCn/OPj ), (23) 
H 

b i -'- ~ W H ( O C H / O P i ) ( O  H --  CH) , (24)  
H 

B = {Bij} is a.symmetric n x n matrix, Cn denotes the 
modulus of the calculated structure factor, O n its 
observed value, w n > 0 is a weight factor, Api change 
of parameter i, Ap = {Api } is a vector in n-dimensional 
space and b = {bi} likewise. It is assumed that the errors 
of the observations are not correlated. 

We may solve (22) by diagonalization (eigenvalue 
analysis): 

( r B r ' ) ( r ~ p )  = f ib) ,  (25) 

which may be reformulated as 

B'Ap'  = b'. (26) 

T is a unitary transformation matrix (T t = T - I ;  T t is T 
transposed). We may consider (26), when compared to 
(22), as a change of parameters, i.e. a rotation in the 
n-dimensional parameter space. Thus, we may also write 

O~i i = ~ WH(OCH/OP~) 2 
H 

and (27) 

bl = ~ Wn(OCn/ap3(O.  - c . ) .  
H 

Each parameter combination {Pi] o r  {p~} is looked 
upon as a vector in an orthogonal space; this means that 
we have implicitly assumed a metric corresponding to the 
scalar product: 

n 

(Pl, P2 . . . . .  P,, ql, q2, " " ,  qn) = Y~Piqi. (28) 
i=l 

Since B' is diagonal, the solution to the normal 
equations in the primed parameter space is very simple: 

Apl -- bl/Bii. (29) 

The solution in terms of the original parameters is 

Ap = TrAp '. 

Problems arise when s o m e  B~i values equal zero. This 
will only happen [see (27)] if the derivative OCa/Op~ is 
zero for all H, which implies that b~ is also equal to zero. 
In this case, any value of Ap~ satisfies the normal 
equations, i.e. its value is totally undetermined by the 
experiment. In several standard mathematical subroutine 
libraries, the action taken, when a close to singular 
problem is encountered, is to put Ap~ -- 0. Singularities 
may in some cases be avoided by measuring other 
reflections, but this is not often the case; the example of 
third-order cumulants in a structure belonging to the 
crystal class 43m cannot be solved this way. In such 
cases, we do need additional information to that 
contained in the diffraction data; it may come from 
imposing constraints on the parameters. The discussion 
below will be limited to linear constraints on the 
parameters which may be expressed by 

n 

c~i  = c .  (30) 
i=! 

If a parameter p~ is undetermined, the vector 
c = (cl, c= . . . . .  cn) must have a non-zero component 
parallel to p~ in order to remove the singularity, i.e. 

c.  Ttpl ¢ 0, P'i "- (0, 0 . . . . .  Pl . . . .  ,0). (31) 

This can be illustrated graphically. Imagine a model 
only depending on two parameters, Pl and P2 (this can be 
generalized to any number of parameters). Fig. 6 shows a 
well behaved case. It is a contour plot of the weighted 
deviance (wD). 

wD = ~ Wn[O n -- Cn(Pl,  p2)] 2, (32) 
H 

which is the function that is minimized by the least- 
squares procedure. It is shown as a function of the two 
model parameters-  the actual figure corresponds to a 
linear model. The contours are drawn at values of 
+ 1, +2  . . . .  of the weighted deviance above its minimum 
at P0~ and Poz. For a linear model, the contours are 
ellipses, the major axes of which correspond to the 
'eigenparameters' (P'l, P~). The 'radii' of the ellipse at 
+1 are equal to the standard deviations of the 
corresponding primed parameter (see Hamilton, 1964, 
ch. 4) and given by 

a(pl) = (1/B~i) 1/2. (33) 

A linear constraint on the model parameters is 
represented by a line satisfying the equation 

clpl + c2P2 = C. (34) 
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Solving the least-squares problem under constraint 
means locating the minimum of wD on this line [on 
Fig. 6 this minimum is denoted (Pcl, Pc2)]. 

In Fig. 7, a representation corresponding to a singular 
situation is shown. There is no unique solution to the 
problem since all points on the broken line have the same 
minimal value of wD. Imposing the constraint means that 
we only have to examine the points on the line [equation 
(34)]. Using 'eigenparameters', p~ (notation of Fig. 7) 
has a well defined value that is independent of the 
constraint (we still assume that both the ref'med model 
and the applied constraint are linear). For a non-singular 
situation, p~ depends on the constraint. 

Complications arise when we have non-singular ill 
behaved normal equations, by which we mean that the 
normal-equations matrix is almost singular or in terms of 
the diagonalized equations that certain elements B~i are  

small, corresponding to ellipses in Fig. 6 with one very 
long major axis. 

According to (33), if B'ii is small, then the corre- 
sponding parameter has a large standard deviation but 
what we mean by 'large' depends very much on the type 
of parameter in question: e..g. for a coordinate of a non-H 
atom, a precision of 0.001 A is good, but crystallographic 
programs are using fractional coordinates in the calcu- 
lation, which implies that good precision means 

pl 

POI Pcl 

Fig. 6. Contour plot of the 'weighted deviance', wD, for a well behaved 
situation. The symbols are explained in the text. 

/(Cl ' C2) 

P'2 

/ / / / ~  Pc1 

Fig. 7. As Fig. 6, but for singular least-squares normal equations, wD 
takes its minimum value at all points on the broken line. 

Table 2. Typical standard deviations for different 
parameters from a precise X-ray diffraction study 

Scale factor 0.1% 
x ,y , z  10-3A 
Ui: 10 -4-10 -5 ~2 

Multipole population coefficients 
P00 5 x 10 -2 
Ptm 2 x 10 -2 

Table 3. Results of singular value decomposition analysis 
for refinement of the multipole population coefficients for 

GaAs 

p~ = gi32_P32_(Ga) + gi4oP4o(Ga) + a~32_P32_(As) + aiaoP4o(As). 

For the definition of P4o, see the explanations in Table 1. 

i g,32- gi4o ai32- ai4o tx(Pl) 
1 0.76 0.08 0.64 0.09 0.38 
2 -0.33 0.62 0.23 0.68 0.04 
3 -0 .56  -0.33 0.73 -0 .22  0.03 
4 0.05 -0.71 -0.07 0.70 0.008 

tr(x/a).~_ 10 -4 assuming a lattice constant of the order 
of 10A. If the least-squares normal-equations matrix is 
diagonal (B ~ B'), this implies that Bii << 108 should be 
considered small. For a multipole population parameter 
with the normalization used in the computer program 
MOLLY (Hansen & Coppens, 1978), a precise study of a 
centrosymmetric structure gives typically tr(Plm ) ~- 0.05, 
and now small m e a n s  Bii <(~ 400. In Table 2, values that 
may be considered 'good standard deviations' are 
compiled. When working with a real case, we are 
confronted with the problem that a parameter P'i is some 
combination of all types of parameters, thus we do not a 
priori have any idea of what 'small' and 'large' mean. In 
order to get more uniform values of Bii, it seems 
reasonable to make a change of parameters by scaling 
such that typically good standard deviations are of the 
order of unity. This corresponds to changing the metric 
of the initial parameter space but we may introduce this 
as an intermediate transformation before the diagonaliza- 
tion [equation 22)]: 

(SBS)(S -~ Ap) = Sb, 

where S is a diagonal matrix composed from the 
idealized standard deviations like those proposed in 
Table 2. 

7. Singular value decomposition applied to GaAs 

For simplicity, we apply the procedure described above 
on the converged model for GaAs but consider only the 
populations of the two cubic harmonic functions on each 
of the two atoms. In Table 3, we give the expression for 
the primed parameters in terms of the original population 
coefficients as well as their standard deviations. As 
already pointed out, the sum of the two octupolar 
populations is poorly determined. It would therefore be 
convenient if one could impose a constraint on this value 
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as we did when we put this sum equal to zero. It is 
nevertheless difficult to justify this constraint from 
chemical reasoning. 

For GaAs, an alternative way of analyzing the electron 
density is to model it as was done by Levallois & Allais 
(1986) and by Pietsch (1985). Their models describe 
the density as formed from spherical electron-density 
distributions at the ion sites and an additional cylin- 
drically symmetric density centered on the bond axis, a 
'bond charge'. The parameters are the ion charges, the 
bond charge, its extent and position. This model 
converges to a very satisfactory density as shown by 
Levallois & AUais (1986). It also has the advantage over 
the multipole model that the positivity of the electron 
density may be ensured by the sufficient condition that 
the populations are positive. Nevertheless, the ambiguity 
remains since we cannot consider this as a unique density 
only depending on the experimental data, independent of 
preconceived ideas. We might imagine that we add some 
octupoles corresponding to the parameter P'l (Table 3) to 
the bond-charge model; this would not significantly 
deteriorate the fit to the experimental data but it does 
modify the electron density. Only if we believe that the 
bond-charge model possesses the right flexibility, may 
we consider the ambiguity owing to the lack of 
knowledge of the phases of the structure factors to be 
removed, but we cannot use the diffraction data to justify 
this belief! 

8. Singular value decomposition applied to LBO 

We consider the multipole analysis presented in a 
previous paragraph. The case is more complicated than 
GaAs for several reasons, but the problems may be 
repaired more easily: 

(a) the number of parameters is large; there are 128 
population coefficients in the unconstrained model that 
we employed; 

(b) the multipole radial functions for boron and 
oxygen are quite different, so we are rather far from 
the more ideal situation described in the general section; 
in particular, the condition given in (20) is not satisfied; 

(c) because the boron multipole functions are more 
diffuse, i.e. they contribute little to the diffraction, their 
population coefficients are much less precisely deter- 

mined  (their standard deviations are about ten times 
higher than those o f  the O atoms). The singular-value- 
decomposition analysis therefore becomes much less 
straightforward to interpret owing tO interferences 
between parameters that are poorly determined because 
of the phase problem and parameters that are poorly 
determined for the above reason. 

Nevertheless, looking at the lowest eigenvalues (B}i), 
we observe that the corresponding parameters are mainly 
combinations of the populations for the dipoles oriented 
along the polar crystal axis, Dz: 

P'l ~ 0.30Dz(B(1)) +0.30Dz(B(2)) +0.80Dz(B(3)) + . . .  

p~ ~ 0.56Dz(B(1)) +0.58Dz(B(2)) +0.39Dz (B(3)) + . . .  

(35) 

(we have left out contributions for which the coefficients 
are smaller than 0.2 - it is stressed that the eigenvectors, 
i.e. the rows of T, are normalized to 1); There are 
contributions from the O atoms to these parameters, 
although very weak, but if we only compare the oxygen 
contributions among themselves, we find again that the 
strongest admixture by far is from the dipoles parallel to 
the polar axis. 

We will next analyze how the constraints help for the 
most poorly determined parameters. The constraints that 
we applied in the present study were that deformations 
of the two trigonally coordinated B atoms were the 
same when referred to their close-neighbor coordination. 
When expressing the multipole functions with respect 
to the local coordinate systems indicated in Fig. 3, the 
constraints are simply 

local elm (B(2) )  ol°cal - - - - In  (B(1) )  

or, in a different form, 

Pffa~(B(2)) - e~°ca~ (B(1)) = 0; 

there is one constraint per coefficient Ptm" For the 
dipoles, it is easy to show how these constraints work 
since the parameter set (Pl 1+, PI 1-, P10) transforms like a 
position vector: 

--Im ! --11+ 
plocal -'- {Eij } I pcryst 
-Ira / - 11 -  • 
plocal ~ pcryst 
--Ira \ --10 

pcryst refers to functions defined with respect to identical lm 
coordinate axes parallel to the crystallographic axes for 
all atoms. The transformation matrices {Eii} for atoms 
B(1) and B(2) are related by Ely(B(1))=-Ely(B(2)) ,  
the other components being identical, since the two 
atoms have their local x axes in opposite directions and 
the y and z axes parallel. The constraints on the three 
dipoles may therefore be written: 

Ell [Pl~+t (B(1)) -b e~+t (B(2))] 

+ E12[p~Tst(B(1)) + P~TSt (B(2))] 

q- El3 [el~yst (B(1) )  -4- P10ryst (B(2) ) ]  --  0, 
[pcryst , ,1,+ ( a ( 0 )  - e 2t (B(2))] 
+ E22 [pl~_~t (B(1)) _ pc~yst - ix-(B(2))]  

eryst +Eza[P10 (B(1)) - peryst - ,0 (B(2))] = 0, 
E3, [e~+t ( B ( 1 ) ) .  pcryst _ , , +  (s(2))]  

+ E32 [P{g_~t (B(1)) - P~St (B(2))] 
+ E33 [Pl%YS' (B(1)) - P~oryst (B(2))] = 0. 
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For the parameter P'I [equation (35)], the scalar product 
defined in (31) becomes, for each of the three constraints, 

ploc . -E13(0.30 + 0.30) ~ -0.6E13 11+ 

ploc . -E23(0.30 - 0.30) "~ 0 l l -  

r, loc " - E  (0.30 - 0.30) --"~ 0. a l 0  33 

Therefore, the constraint on the dipole in the x direction 
of the local coordinate systems is the only one that can be 
efficient and only if E13 [the direction cosine of the local 
x axis of B(1) with respect to the c axis of the crystal] is 
large (close to +1), i.e. the local x axis must form an 
angle with the polar axis quite different from 90 ° . For 
LBO, this angle is 54 °, E13 -- 0.58. 

For LBO, we could imagine other constraints. We 
might impose the electron density of the atoms B(1) and 
B(2) to be symmetric with respect to the plane formed by 
the three next-neighbor O atoms, and possibly also 
impose a local mirror symmetry on the tetrahedrally 
coordinated B(3) atom. 

From inspection of the form of the parameters p'a and 
p~ [equation (35)], one sees that it is important to find a 
constraint that affects the dipole population coefficient of 
B(3). 

We will not go any further into the analysis of the 
electron density of LBO but refer to the detailed analysis 
by Le H6naff et al. (1996). 

9. Conclusions 

We will briefly examine a number of situations that at 
first sight seem to invalidate the conclusions that we have 
drawn from our analysis. 

The existence of pseudo-forbidden reflections for 
some crystals implies that the atoms must have odd- 
parity components in their density distribution. The best 
known example of this is the 222 reflection of silicon, 
but since the space group is centrosymmeWic it does not 
apply to the present discussion. Comparing with our 
analysis of GaAs, we may consider the constraint that 
was applied [P32_(Ga)---P32_(As)] as introducing a 
pseudo center of inversion into the structure. For a 
structure type such as zinc blende, 'forbidden' Bragg 
reflections of this type do not exist but a significant 
difference between observed structure amplitudes of the 
relatively weak h + k + l = 4n + 2 reflections and the 
calculated structure amplitudes for a model only taking 
into account centrosymmetric density functions on the 
atoms will be a clue to the importance of pile-up of bond 
density; i.e. in the multipole expansion there must be a 
significant contribution from the octupoles. Our analysis 
agrees with this but shows that we cannot decide from 
the data on which atom this deformation is preponderant. 

Pseudo-extinctions analogous to those of the '4n + 2 
reflections' in silicon can occur in some non-centro- 
symmetric space groups. 'Violations' of these imply that 

non-spherical deformations of the atomic densities must 
exist; but inspection of the space groups shows that these 
weak intensities never impose any values on the 
populations of the troublesome odd-order multipoles. 
As an example of this, consider the space group P222j. 
If the atoms are on one type of special position, 
special conditions apply to the reflections hOl or Okl, but 
the only invariant odd-order multipole (l < 3) in this 
class is Y32-, which does not contribute to these reflection 
groups. Their intensities are only affected by other 
multipoles. 

Our approach to the problem could also have been 
based on the Patterson function. The general problem 
that has been discussed thoroughly in the past was 
whether a unique atomic structure can be found in all 
cases (it was tacitly assumed that the atomic density 
distributions are centrosymmetric). We are concerned 
with a more delicate problem: even if a unique structure 
can be found, the total density is not unique. This can 
easily be seen if we add a density function of odd parity 
(e.g. odd-order multipoles) to predominant spherically 
symmetric densities; all the mixed convolution integrals 
between even and odd functions cancel and the Patterson 
function is only modified to second order in the odd- 
parity functions. This is the analog to the approximation 
in (19). 

The aim of the present analysis is to draw attention to 
the fact that for non-centrosymmetric crystal structures a 
'truly experimental' electron density cannot be obtained 
from an X-ray diffraction experiment. This is contrary to 
the situation for centrosymmetric structures for which 
even crude models (e.g. structure factors calculated from 
non-interacting free-atom electron-density distributions) 
predict correct signs of the structure factors for the vast 
majority of Bragg reflections. 

For the non-centrosymmetric cases, we should there- 
fore always consider very carefully how we model the 
electron density, since the way we model or constrain the 
model limits the questions that we can ask about the 
electron density. The conclusion may be drawn that we 
should not attempt to analyze electron densities by 
modeling but content ourselves with comparing experi- 
mental structure-factor amplitudes with theory. At 
present, this would limit the compounds that we could 
study because of the quality of theoretical computations 
of electronic wave functions for big molecules or 
crystals. 

When things seem to work out for organic crystals 
(with the exception of highly symmetric cases like 
hexamethylenetetramine), one reason is that constraints 
are almost always applied to the density models from the 
very beginning of the analysis, and mostly without any 
other justifications than: (i) to reduce the ratio of the 
number of variables to the number of measured 
reflections; (ii) that certain parameters (e.g. individual 
H-atom charges and multipole deformations) would be 
determined with low precision. 
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The possibly best way of improving the analysis of 
charge densities for non-centrosymmetric structures may 
be to introduce into the modeling true experimental 
phase information. Nevertheless, it may only be possible 
to obtain this with sufficient accuracy for simple 
structures - the only example we know of is BeO 
(Zuo, Spence, Downs & Mayer, 1993). 

The authors thank U. Pietsch for fruitful discussions 
on the X-ray diffraction studies of GaAs. The final form 
of this paper owes a great deal to the referees, especially 
a large part of the discussion in the concluding section. 
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